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1
CONDITIONAL PLASTICITY SPIKING
NEURON NETWORK APPARATUS AND
METHODS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to co-owned U.S. patent appli-
cation Ser. No. 13/152,119, entitled “SENSORY INPUT
PROCESSING APPARATUS AND METHODS”, filed on
Jun. 2, 2011, co-owned and co-pending U.S. patent applica-
tion Ser. No. 13/465,924, entitled “SPIKING NEURAL
NETWORK FEEDBACK APPARATUS AND METH-
ODS”, filed May 7, 2012, co-owned and co-pending U.S.
patent application Ser. No. 13/465,903 entitled “SENSORY
INPUT PROCESSING APPARATUS IN A SPIKING NEU-
RAL NETWORK?>, filed May 7, 2012, a co-owned U.S.
patent application Ser. No. 13/465,918, entitled “SPIKING
NEURAL NETWORK OBJECT RECOGNITION APPA-
RATUS AND METHODS?”, filed May 7, 2012, and a co-
owned U.S. patent application Ser. No. 13/488,106, entitled
“SPIKING NEURON NETWORK APPARATUS AND
METHODS”, filed Jun. 4, 2012, each of the foregoing incor-
porated herein by reference in its entirety.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND

1. Field of the Innovation

The present innovation relates generally to artificial neural
networks and more particularly in one exemplary aspect to
computer apparatus and methods for pulse-code neural net-
work processing of sensory input.

2. Description of Related Art

Artificial spiking neural networks are frequently used to
gain an understanding of biological neural networks, and for
solving artificial intelligence problems. These networks typi-
cally employ a pulse-coded mechanism, which encodes infor-
mation using timing of the pulses. Such pulses (also referred
to as “spikes” or ‘impulses’) are short-lasting (typically on the
order of 1-2 ms) discrete temporal events. Several exemplary
embodiments of such encoding are described in commonly
owned and co-pending U.S. patent application Ser. No.
13/152,084 entitled APPARATUS AND METHODS FOR
PULSE-CODE INVARIANT OBJECT RECOGNITION”,
filed Jun. 2, 2011, and U.S. patent application Ser. No.
13/152,119, Jun. 2, 2011, entitled “SENSORY INPUT PRO-
CESSING APPARATUS AND METHODS?”, each incorpo-
rated herein by reference in its entirety.

Typically, artificial spiking neural networks, such as the
network 100 shown for example in FIG. 1, may comprise a
plurality ofunits (or nodes) 102, which correspond to neurons
in a biological neural network. Any given unit 102 may be
connected to many other units via connections 104, also
referred to as communications channels, or synaptic connec-
tions. The units providing inputs to any given unit (e.g., the
unit 102_2 in FIG. 1) are commonly referred to as the pre-
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synaptic units (e.g., the units 102_1 in FIG. 1), while the unit
receiving the inputs (e.g., the unit 102_2 in FIG. 1) is referred
to as the post-synaptic unit.

In the network 100, networks inputs to neurons 102 may be
delivered as temporal events via the connections 104. Each of
the unit-to-unit connections may be assigned, inter alia, a
connection efficacy, which in general refers to a magnitude
and/or probability of input spike influence on neuronal
response (i.e., output spike generation or firing), and may
comprise, for example a parameter—synaptic weight—by
which one or more state variables of post synaptic unit are
changed. During operation of the pulse-code network (e.g.,
the network 100), synaptic weights may be dynamically
adjusted using what is referred to as the spike-timing depen-
dent plasticity (STDP) in order to implement, among other
things, network learning. In some implementations, larger
weights may be associated with a greater effect a synapse has
on the activity of the post-synaptic neuron.

One such plasticity mechanism is illustrated with respect to
FIGS. 2-3. Traces 200, 210 in FIG. 2 depict a pre-synaptic
input spike train (delivered for example via connection 104_1
in FIG. 1) and post synaptic output spike train (generated, for
example, by the neuron 102_1 in FIG. 1), respectively.

Properties of the connections 104 (such as weights w) are
typically adjusted based on relative timing between the pre-
synaptic input (e.g., the pulses 202, 204, 206, 208 in FIG. 2)
and post-synaptic output pulses (e.g., the pulses 214, 216,218
in FIG. 2). One typical STDP weight adaptation rule is illus-
trated in FIG. 3, where the rule 300 depicts synaptic weight
change Aw as a function of the time difference between the
time of post-synaptic output generation and arrival of pre-
synaptic input At=t, ~t,,.. In some implementations, syn-
aptic connections (e.g., the connections 104 in FIG. 1) deliv-
ering pre-synaptic input prior to the generation of post-
synaptic response are potentiated or increased (as indicated
by Aw>0 associated with the curve 302), while synaptic con-
nections (e.g., the connections 104 in FIG. 1) delivering pre-
synaptic input subsequent to the generation of post-synaptic
response are depressed (as indicated by Aw<0 associated with
the curve 304 in FIG. 3). By way of illustration, when the
post-synaptic pulse 208 in FIG. 2 is generated: (i) connection
associated with the pre-synaptic input 214 precedes the out-
put pulse (indicated by the line denoted 224) and it is poten-
tiated (Aw>0 in FIG. 3 and the weight is increased); and (ii)
connections associated with the pre-synaptic input 216, 218
that follow are depressed (Aw<0 in FIG. 3 and the weights are
decreased).

In some existing plasticity implementations, connections
that deliver inputs prior to generation of post-synaptic
response (e.g., therule 304 in FIG. 3) are potentiated. Accord-
ingly, a neuron (e.g., the neuron 102_4 in FIG. 1) may acquire
a synapse (e.g., the connection 104_1 in FIG. 1) that is suffi-
ciently strong (e.g., is characterized by high efficacy) to cause
the neuron to generate post-synaptic response regardless of
inputs received via other connections. As a result, the con-
nection 104_1 may be kept from being potentiated (in agree-
ment with, for example, the STDP curve 403 in FIG. 3). This
may generate a positive feedback loop of one or more con-
nections, thereby causing infinite growth of their synaptic
weights. Such positive feedback and uncontrolled synapse
efficacy growth is often undesirable, as it may cause network
instability, excessive post-synaptic responses, and general
failure of the network.

Some existing solutions utilize a weight cap configured to
restrict connection efficacy growth. However, generalized
cap selection is not often straightforward, as different cap
values may result in completely different dynamical regimes
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of the network. Moreover, translating network tasks (e.g.,
image encoding) into connection weights, particularly when
varying the input, is not well understood.

Consequently there is a salient need for improved mecha-
nisms to produce a spiking neuron network capable of oper-
ating in a wide variety of input and network dynamic regimes.

SUMMARY OF THE DISCLOSURE

The present disclosure satisfies the foregoing needs by
providing, inter alia, apparatus and methods for enhancing
performance of a neural network.

In one aspect of the present invention, a method of operat-
ing a connection configured to communicate an input to an
artificial spiking neuron is disclosed. In one embodiment, the
method includes: (i) determining an efficiency associated
with operating the connection in accordance with a first plas-
ticity mechanism, and (ii) based at least in part on an indica-
tion, operating the connection in accordance with a second
plasticity mechanism. The indication is based at least in part
on a comparison of the efficiency to a target efficiency.

In a second aspect of the present invention, a computerized
apparatus is disclosed. In one embodiment, the computerized
apparatus includes a storage medium, the storage medium
including a plurality of executable instructions. The execut-
able instructions are configured to, when executed, adjust an
efficiency of a connection associated with at least one spiking
neuron by at least: (i) when the efficiency is below a target
value, configuring an efficacy adjustment of the connection in
accordance with a first mechanism, and (ii) when the effi-
ciency is above the target value, configuring the efficacy
adjustment in accordance with a second mechanism at least
partly different than the first mechanism.

In another embodiment, the computerized apparatus
includes a computerized spiking neural network apparatus
including a storage medium. The storage medium includes a
plurality of instructions configured to, when executed, imple-
ment dynamic control of responses of a neuron of the neural
network to feed-forward stimulus received by the neuron via
aplurality of connections by at least: (i) for at least one of the
plurality of connections that provides at least a portion of the
stimulus, applying a first plasticity mechanism, and (ii) based
at least in part on an indication, applying a second plasticity
mechanism different than the first. The first and second
mechanisms cooperate to effectuate the dynamic control.

In a third aspect of the invention, a method for determining
aplasticity condition in an artificial spiking neural network is
disclosed. In one embodiment, the method includes: (i) iden-
tifying at least one neural connection; (ii) determining a target
connection efficiency; (iii) selecting a rule to enforce the
target connection efficiency; and (iv) applying at least the one
rule to the at least one neural connection.

In a fourth aspect of the invention, a system is disclosed. In
one embodiment, the system includes: (i) one or more neu-
rons; and (ii) a plurality of connections, the connections inter-
linking the one or more neurons. The plurality connections
each having associated therewith a weight, the weight indi-
cating a probability of response. At least one individual one of
the plurality of connections is configured to: (i) implement a
first plasticity mechanism related to alteration of its associ-
ated weight, and (ii) in response to an indicator, implement a
second plasticity mechanism in place of the first plasticity
mechanism.

In a fifth aspect of the invention, a method of operating a
spiking neuronal network is disclosed. In one embodiment,
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4

the method includes using a target efficiency and a measured
efficiency to govern, inter alia, use of one or more plasticity
rules.

Further features of the present disclosure, its nature and
various advantages will be more apparent from the accompa-
nying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting an artificial spiking
neural network according to the prior art.

FIG. 2 is a graphical illustration depicting spike timing in
the spiking network of FIG. 1, according to the prior art.

FIG. 3 is a plot depicting spike time dependent plasticity
(STDP) spike timing in the spiking network of FIG. 1, accord-
ing to the prior art.

FIG. 4 is a block diagram depicting an artificial spiking
neural network comprising conditional plasticity mechanism
according to one implementation of the disclosure.

FIG. 5 is a graphical illustration depicting a target effi-
ciency-based conditional plasticity mechanism useful with
the network of FIG. 4, according to one implementation.

FIG. 6A is a plot illustrating spike-time dependent plastic-
ity rules useful with the conditional plasticity mechanism of
FIG. 4, in accordance with one implementation.

FIG. 6B is a plot illustrating spike-time dependent plastic-
ity rules useful with the conditional plasticity mechanism of
FIG. 4, in accordance with other implementations.

FIG. 7 is a logical flow diagram illustrating a generalized
conditional plasticity update, in accordance with one imple-
mentation.

FIG. 8 is a logical flow diagram illustrating a generalized
method of conditional plasticity update based on target con-
nection efficiency, in accordance with one implementation.

FIG. 9 is a block diagram illustrating a sensory processing
apparatus configured to implement conditional plasticity
mechanism in accordance with one implementation.

FIG. 10 is a block diagram illustrating a computerized
system useful for, inter alia, providing a conditional plasticity
mechanism in a spiking network, in accordance with one
implementation.

FIG. 11A is a block diagram illustrating a neuromorphic
computerized system useful with, inter alia, a conditional
plasticity mechanism in a spiking network, in accordance
with one implementation.

FIG. 11B is a block diagram illustrating a hierarchical
neuromorphic computerized system architecture useful with
inter alia, a conditional plasticity mechanism in a spiking
network, in accordance with one implementation.

FIG. 11C is a block diagram illustrating a cell-type neuro-
morphic computerized system architecture useful with, inter
alia, a conditional plasticity mechanism in a spiking network,
in accordance with one implementation.

All Figures disclosed herein are © Copyright 2012 Brain
Corporation. All rights reserved.

DETAILED DESCRIPTION

Embodiments and implementations of the present innova-
tion will now be described in detail with reference to the
drawings, which are provided as illustrative examples so as to
enable those skilled in the art to practice the disclosure. Nota-
bly, the figures and examples below are not meant to limit the
scope of the present disclosure to a single embodiment or
implementation, but other embodiments and implementa-
tions are possible by way of interchange of or combination
with some or all of the described or illustrated elements.
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Wherever convenient, the same reference numbers will be
used throughout the drawings to refer to same or like parts.

Where certain elements of these embodiments or imple-
mentations can be partially or fully implemented using
known components, only those portions of such known com-
ponents that are necessary for an understanding of the present
disclosure will be described, and detailed descriptions of
other portions of such known components will be omitted so
as not to obscure the innovation.

In the present specification, an embodiment or implemen-
tations showing a singular component should not be consid-
ered limiting; rather, the invention is intended to encompass
other embodiments or implementations including a plurality
of the same component, and vice-versa, unless explicitly
stated otherwise herein.

Further, the present invention encompasses present and
future known equivalents to the components referred to
herein by way of illustration.

As used herein, the term “bus” is meant generally to denote
all types of interconnection or communication architecture
that is used to access the synaptic and neuron memory. The
“bus” could be optical, wireless, infrared or another type of
communication medium. The exact topology of the bus could
be for example standard “bus”, hierarchical bus, network-on-
chip, address-event-representation (AER) connection, or
other type of communication topology used for accessing,
e.g., different memories in pulse-based system.

As used herein, the terms “computer”, “computing
device”, and “computerized device”, include, but are not lim-
ited to, personal computers (PCs) and minicomputers,
whether desktop, laptop, or otherwise, mainframe computers,
workstations, servers, personal digital assistants (PDAs),
handheld computers, embedded computers, programmable
logic device, personal communicators, tablet computers, por-
table navigation aids, J2ME equipped devices, cellular tele-
phones, smart phones, personal integrated communication or
entertainment devices, or literally any other device capable of
executing a set of instructions and processing an incoming
data signal.

As used herein, the term “computer program” or “soft-
ware” is meant to include any sequence or human or machine
cognizable steps which perform a function. Such program
may be rendered in virtually any programming language or
environment including, for example, C/C++, C#, Fortran,
COBOL, MATLAB™, PASCAL, Python, assembly lan-
guage, markup languages (e.g., HTML, SGML, XML,
VoXML), and the like, as well as object-oriented environ-
ments such as the Common Object Request Broker Architec-
ture (CORBA), Java™ (including J2ME, Java Beans, etc.),
Binary Runtime Environment (e.g., BREW), and the like.

As used herein, the terms “connection”, “link™, “synaptic
channel”, “transmission channel”, “delay line”, are meant
generally to denote a causal link between any two or more
entities (whether physical or logical/virtual), which enables
information exchange between the entities.

As used herein, the term “memory” includes any type of
integrated circuit or other storage device adapted for storing
digital data including, without limitation, ROM. PROM,
EEPROM, DRAM, Mobile DRAM, SDRAM, DDR/2
SDRAM, EDO/FPMS, RLDRAM, SRAM, “flash” memory
(e.g., NAND/NOR), memristor memory, and PSRAM.

As used herein, the terms “processor”, “microprocessor”
and “digital processor” are meant generally to include all
types of digital processing devices including, without limita-
tion, digital signal processors (DSPs), reduced instruction set
computers (RISC), general-purpose (CISC) processors,
microprocessors, gate arrays (e.g., field programmable gate
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arrays (FPGAs)), PLDs, reconfigurable computer fabrics
(RCFs), array processors, secure microprocessors, and appli-
cation-specific integrated circuits (ASICs). Such digital pro-
cessors may be contained on a single unitary IC die, or dis-
tributed across multiple components.

As used herein, the term “network interface” refers to any
signal, data, or software interface with a component, network
or process including, without limitation, those of the FireWire
(e.g., FW400, FW800, etc.), USB (e.g., USB2), Ethernet
(e.g., 10/100, 10/100/1000 (Gigabit Ethernet), 10-Gig-E,
etc.), MoCA, Coaxsys (e.g., TVnet™), radio frequency tuner
(e.g., in-band or OOB, cable modem, etc.), Wi-Fi (802.11),
WIiMAX (802.16), PAN (e.g., 802.15), cellular (e.g., 3G,
LTE/LTE-A/TD-LTE, GSM, etc.) or IrDA families.

As used herein, the terms “pulse”, “spike”, “burst of
spikes”, and “pulse train” are meant generally to refer to,
without limitation, any type of a pulsed signal, e.g., a rapid
change in some characteristic of a signal, e.g., amplitude,
intensity, phase or frequency, from a baseline value to a higher
orlower value, followed by a rapid return to the baseline value
and may refer to any of a single spike, a burst of spikes, an
electronic pulse, a pulse in voltage, a pulse in electrical cur-
rent, a software representation of a pulse and/or burst of
pulses, a software message representing a discrete pulsed
event, and any other pulse or pulse type associated with a
discrete information transmission system or mechanism.

As used herein, the term “receptive field” is used to
describe sets of weighted inputs from filtered input elements,
where the weights may be adjusted.

As used herein, the term “Wi-Fi” refers to, without limita-
tion, any of the variants of IEEE-Std. 802.11 or related stan-
dards including 802.11a/b/g/n/s/v and 802.11-2012.

As used herein, the term “wireless” means any wireless
signal, data, communication, or other interface including
without limitation Wi-Fi, Bluetooth, 3G (3GPP/3GPP2),
HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA,
etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16),
802.20, narrowband/FDMA, OFDM, PCS/DCS, LTE/LTE-
A/TD-LTE, analog cellular, CDPD, satellite systems, milli-
meter wave or microwave systems, acoustic, and infrared
(e.g., IrDA).

Overview

The present disclosure provides, in one salient aspect,
apparatus and methods for implementing conditional plastic-
ity mechanisms configured to, inter alia, reduce uncontrolled
potentiation of connections in artificial spiking neuron net-
works, without requiring hard-limiting of weights.

In one or more implementations, the conditional plasticity
mechanism may be based on an efficiency of a connection
(e.g., synapse). For example, connection efficiency S, may
be determined as a ratio of a number of input (pre-synaptic)
spikes N, delivered to a neuron via the connection that are
followed by neuron response (e.g., post-synaptic spike) gen-
eration, to the total number of input spikes N__, delivered to
the neuron via the connection.

The dynamical parameter S_,may be used to estimate effi-
ciency of a synapse in driving the post-synaptic neuron.
Accordingly, S, may provide information of whether the
connection is weak or strong (e.g., the synaptic weightis large
or small). Connection strength evaluation based on connec-
tion efficiency S,_, is more desirable as opposed approaches of
the prior art that rely on the weight value. Accordingly,
depending on the current neuron state (e.g., neuron excitabil-
ity) and/or activity on other synapses, a pre-synaptic input via
a particular connection may cause the neuron to spike, even
when the synaptic weight of this connection is relatively low.
Conversely, when neuron excitability is low (and/or the neu-
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ron may be inhibited), a pre-synaptic input may not cause
neuronal post-synaptic response even when the synaptic
weight is comparatively higher.

Since the connection weights are plastic and may change,
the connection efficiency S_,is therefore not fixed, and may
change as a result of input and output activity of a neuron. In
one or more implementations, the connection plasticity (e.g.,
STDP) may be configured to maintain a target value of the
connection efficiency S,

In one or more implementations, the actual value of the
connection efficiency may be compared to the target effi-
ciency. The various connections of the same neuron may be
configured each with the same target efficiency, each with
different target efficiencies, or some mixture thereof. A con-
nection may be updated using a spike-timing dependent plas-
ticity rule; e.g., a pre-synaptic portion and a post-synaptic
portion. The STDP rule may comprise for instance a long
term depression (LTD) rule or a long term potentiation (LTP)
rule. For example, the pre-synaptic portion may comprise the
long term LTD rule, and the post-synaptic portion may com-
prise the LTP rule. When the actual connection efficiency is
below or above a target value, a first or second STDP rule may
be applied respectively. The first STDP rule may comprise for
instance an increased LTP resulting in, inter alia, stronger
connection potentiation, or alternatively a decreased L'TD,
resulting in, inter alia, weaker connection depression. The
foregoing two approaches may also be combined, thereby
producing higher connection efficacy.

Similarly, the second STDP rule may comprise an
increased LTD resulting in, inter alia, stronger connection
depression, or alternatively an increased LTP, resulting in,
inter alia, stronger connection potentiation. These two latter
approaches may also be combined, thereby producing lower
connection efficacy.

In some implementations, when the actual connection effi-
ciency is above the target value, the LTD rule of the STDP
may be increased, resulting in, inter alia, stronger connection
depression.

In another aspect of the disclosure, connection adjustment
methodologies are used to implement processing of visual
sensory information and feature/object recognition using
spiking neuronal networks. Portions of the object recognition
apparatus can be embodied for example in a remote comput-
erized apparatus (e.g., server), comprising a computer read-
able apparatus.

Embodiments of the foregoing feature detection function-
ality of the present disclosure are useful in a variety of appli-
cations including for instance a prosthetic device, autono-
mous robotic apparatus, and other electromechanical devices
requiring visual or other sensory data processing functional-
ity.

Conditional Plasticity

Detailed descriptions of the various embodiments and
implementations of the apparatus and methods of the disclo-
sure are now provided. Although certain aspects of the dis-
closure can best be understood in the context of the visual and
sensory information processing using spiking neural net-
works, the disclosure is not so limited, and implementations
of the disclosure may also be used in a wide variety of other
applications, including for instance in implementing connec-
tion adaptation in pulse-code neural networks.

Implementations of the disclosure may be for example
deployed in a hardware and/or software realization of a neu-
romorphic computer system. In one such implementation, a
robotic system may include a processor embodied in an appli-
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8

cation specific integrated circuit, which can be adapted or
configured for use in an embedded application (such as a
prosthetic device).

Generalized Framework

FIG. 4 illustrates one exemplary implementation of a spik-
ing neuronal network of the disclosure, configured to process
sensory information using conditional plasticity. The network
400 comprises a plurality of pre-synaptic spiking neurons
402, configured to deliver feed-forward spiking input to the
post-synaptic neuron 412 via connections 404. The neuron
414 may generate output (e.g., a post-synaptic spike) such as
for example those described in co-owned and co-pending
U.S. patent application Ser. No. 13/152,105 filed on Jun. 2,
2011, and entitled “APPARATUS AND METHODS FOR
TEMPORALLY PROXIMATE OBJECT RECOGNITION”,
incorporated by reference herein in its entirety. The output
spikes of the neuron 412 may be propagated via a connection
414. Post-synaptic spike generation is well-established in the
spiking network arts, and accordingly will not be described in
detail herein for brevity and clarity of presentation of the
inventive aspects of the present disclosure.

The connections 404_1, 404_2, 404_3 may be character-
ized by connection efficacy (e.g., connection weight 408).
Efficacy may refer to a magnitude and/or probability of input
spike influence on neuronal response (i.e., output spike gen-
eration or firing), and may comprise, for example a param-
eter—synaptic weight (408 in FIG. 4)—by which one or more
state variables of post synaptic unit are changed.

Contrasted with the prior art network 100 described with
respect to FIG. 1 supra, the exemplary inventive network 400
of FIG. 4 comprises a conditional plasticity mechanism 410.
In one or more implementations, the conditional spike-timing
dependent plasticity (STDP) mechanism 410 may be config-
ured based on connection efficiency; e.g., as a ratio of a
number of input spikes N, delivered to a neuron via the
connection that are followed by neuron response generation
(e.g., neuron firing post-synaptic spike) to the total number of
input spikes N, , delivered to the neuron via the connection, as
set forth In Eqn. 1 below:

_Nie  Npwe (Eqn. 1)

" Nt Npre+Nuge

Sef > Niot = Ngre + Nigge

where N, ;. is the number of input spikes that did not cause the
(specified) post-synaptic response. It will be appreciated that
the Nj,, value (and hence the other values) may also be
defined in terms of a desired or specified response (versus any
response).

Since the connection weights are plastic and may con-
stantly change, the connection efficiency S,,is therefore not
fixed, and may change as a result of input and output activity
of a neuron, as illustrated in FIG. 5.

In one or more implementations, the actual value of the
connection efficiency, depicted by the curve 502 in FIG. 5,
may be compared to the target efficiency, depicted by the
broken line 504 in FIG. 5. In one or more implementations,
the connection plasticity rule (e.g., the conditional STDP rule
410 of FIG. 4) may be configured to maintain a target value of
the connection efficiency, as illustrated by the curve 512 in
FIG. 5.

In some implementations, an instantaneous value of actual
connection efficiency may be evaluated for one or more input
spikes delivered through the connection, and/or for one or
more output spikes generated by the neuron. A running aver-
age of S, may also be used for the conditional plasticity
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mechanism. In some implementations, a running mean of the
input and/or output activity may be used as follows:

(5™ =, D=1, (S™)=Z;,0(~1") (Eqn. 2)

where f=1, 2, ..., N is the spike designator within the running
window of length T, and 3(.) is the Dirac function with 8(t)=0
for t=0 and

T~ 8(ndr=1 (Eqn. 3)

In some implementations, when the actual connection effi-
ciency is below target value, a first STDP rule may be applied,
as depicted by the ‘Update 1” designator in FIG. 5. When the
actual connection efficiency is above the target value, a sec-
ond STDP rule may be applied, as depicted by the ‘Update 2’
designator in FIG. 5.

The first STDP rule may comprise for instance an
increased LTP resulting in, inter alia, stronger connection
potentiation, or alternatively a decreased LTD resulting in,
inter alia, weaker connection depression. The above two
approaches may also be combined if desired, thereby produc-
ing higher connection efficacy.

Similarly, the second STDP rule may comprise an
increased LTD resulting in, inter alia, stronger connection
depression, or alternatively an increased LTP resulting in,
inter alia, stronger connection potentiation. The two latter
approaches may also be combined, thereby producing lower
connection efficacy.

In some implementations, when the actual connection effi-
ciency is above the target value, the LTD rule of the STDP
may be increased, resulting in, inter alia, stronger connection
depression. In some implementations, when the actual con-
nection efficiency is above the target value, the LTP rule of the
STDP may be decreased, resulting in, inter alia, weaker con-
nection potentiation.

FIGS. 6 A-6B illustrate exemplary STDP rules useful with
conditional plasticity mechanism described herein. The curve
602 in FIG. 6A depicts the fixed portion E,, of the plasticity
update. Several solid curves 604 depict the variable portion
E,, of the plasticity update, corresponding to different amount
of potentiation and/or depression that may be used to config-
ure plasticity of connections (e.g., the connections 404 in
FIG. 4). Thus, the variable portion of conditional STDP
update rule may be modulated (i.e., varied) as shown in FIG.
6A by the different magnitude of the curves within the LTP
group 604. In some implementations, the modulation may be
effectuated based on the connection efficiency. Specifically,
in one such case, the update (e.g., the Update 1 in FIG. 5) may
comprise the variable portion E,, (the curve group 604 in FIG.
6A) rule that is configured based on a difference measure
between the target efficiency and actual efficiency of the
connection:

E,, %S /S arg (Eqn. 4)

Accordingly, the broken curve 606 of FIG. 6A depicts the
cumulative modulated STDP rule configured as a sum of the
curve 602 portion and the portion of the corresponding curve
of group 604:

E~E+BE,, -p=10.. . 1] (Eqn. 5)

Similarly, the cumulative modulated STDP rules illus-
trated by the curves 616, 626 in FIG. 6B may comprise the
un-modulated portion (the curves 612, 622) and modulated
portion (the curve groups 614, 624). The implementation
depicted by the cumulative modulated STDP rule of curve
616 in FIG. 6B, comprises long term potentiation on both
pre-synaptic and post-synaptic sides as |Atl increases. The
implementation depicted by the cumulative modulated STDP
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rule of curve 616 in FIG. 6B, comprises long term potentia-
tion on the post-synaptic side as At increases. In some imple-
mentations, the cumulative modulated STDP rule may com-
prise long term depression on the pre-synaptic side as At
decreases, as shown by curve 626 in FIG. 6B.

In one or more implementations, the un-modulated portion
E, of STDP (e.g., the curves 602, 612, 622 in FIGS. 6A-6B)
may correspond to the connection reaching the target effi-
ciency. The un-modulated portion may also be for example
slightly negative, thereby effectuating a small amount of con-
nection depression in order to prevent sudden weight growth
due to an errant input spike.

In some implementations, the un-modulated portion E,, of
STDP (e.g., the curves 604, 614, 624 in FIGS. 6 A-6B) may
correspond the a regular plasticity rule, such as described, for
example, in U.S. patent application Ser. No. 13/488,106,
entitled “SPIKING NEURON NETWORK APPARATUS
AND METHODS, previously incorporated herein. In other
cases, such as the implementation illustrated by Eqn. 5, the
modulated portion is tuned by the parameter 3. The modula-
tion parameter § may be varied for instance in the range from
zero to one during network operation. In one such implemen-
tation, the modulation parameter may be set to one (1) at the
beginning of the operational run (corresponding to zero initial
connection efficiency), thereby providing maximum (for the
given conditional STDP rule) amount of plasticity adjustment
(e.g., the curve 614_1 in FIG. 6B). As the connection may be
gradually potentiated, the connection efficiency S_, may
approach the target value (e.g., the level 504 in FIG. 5).
Accordingly, the modulation parameter 3 may be reduced to
zero, thereby diminishing the amount of plasticity adjustment
due to the modulated term in Eqn. 5.

In some implementations, the modulated portion of the
conditional plasticity rule (e.g., the curve groups 604, 614,
624 in FIGS. 6A-6B) may be obtained by varying time delay
At by ixdt as:

E,(AD=E,,(idt+Ad) (Eqn. 6)

where dt is a delay increment.

The realization of Eqn. 6 may be interpreted in some cases as
shifting one of the curves within the modulated portion (e.g.,
the curve 604_1 in FIG. 6A) along the horizontal At axis.
Exemplary Implementations

In one or more exemplary implementations, the condi-
tional plasticity updates discussed above may be effectuated
based on one or more events. For instance, Elementary Net-
work Description events may be utilized as described in detail
in a co-pending and co-owned U.S. patent application Ser.
No. 13/239,123, entitled “ELEMENTARY NETWORK
DESCRIPTION FOR NEUROMORPHIC SYSTEMS”, filed
Sep. 21,2011, incorporated herein in its entirety. As described
therein, the dynamics of a given neural connection may be
divided into pre-synaptic and post-synaptic events. The pre-
synaptic event may be triggered for example when the syn-
apse delivers its input to the neuron. The post-synaptic event
may be triggered for example when the neuron generates
post-synaptic output.

In one or more implementations of the present disclosure,
the connection (e.g., connection 404 in FIG. 4) may be con-
figured using a parameter B_, configured to describe event-
based connection efficacy. The parameter E_,may evolve in
any number of ways, such as for example the following:

when a pre-synaptic event occurs, the parameter E_- may

decay with time as follows:
E~E 0 (Eqn. 7)

where o<1 is the decay rate;
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when a post-synaptic event occurs, the parameter E_-may
be incremented by an amount, which depends on the
time interval (t,,.,,~t,,.) between the pre-synaptic input
and the post-synaptic spike:

EFE rtH by s pre)- (Eqn. 8)

In one particular implementation, the adjustment of Eqn. 8
may be configured as follows:

1, Ar=sC
0; Ar>C,

Eqn. 9
H(Al‘){ (Eqn. 9)

where C is an time window during which pre-synaptic input
activity is monitored, shown by the arrow 610 in FIG. 6A. The
function H(At) in Eqn. 8 may Eqn. 9Eqn. 9 encode the amount
of ‘influence’ the connection (e.g., the connection 404_1 in
FIG. 4) may have had on the post-synaptic response genera-
tion by the neuron (e.g., the neuron 412 in FIG. 4).

In one or more implementations, when the connection may
be active within the time window C (prior to the post-synaptic
response t,,.), the connection efficacy may be increased
(H=1); otherwise the connection efficacy remains unchanged
(H=0). As will be appreciated by those skilled in the arts, the
above implementation (i.e. Eqn. 9) Eqn. 9Eqn. 9 comprises
just one example, and many other realizations (e.g., H(At)
comprising integrable function having potentiation and/or
depression branches) may be used as well.

By way of example, if the number of input spikes (N, of
Eqn. 1) that are followed by neuron response generation,
comprise the fraction p of the total number N, , of input
spikes, the corresponding value of E,, may be determined
using the following expression:

E ~Ol/pE L. (Eqn. 10)

In one or more implementations, Eqn. 10 may be interpreted
as follows: 1 case when pre-synaptic input may cause post-
synaptic response, are accompanied by 1/p cases when the it
does not (although the connection is active, i.e. communi-
cated the pre-synaptic input). By way of example, if p=0.1
and ¢=0.9, Eqn. 10 may become:

E~09'%E_+1=035E +1
(1-0.35)E =1,

E ~1.53. (Eqn. 11)

In one or more implementations, the solution of Eqn. 10 may
be expressed as:

1 (Eqn. 12)

Eo = T—a2p’

In some implementations, Eqn. 12 may be used to determine
a general relationship between the actual fraction p and the
steady state of the running average E,_.

Other functional dependencies of H(At) in Eqn. 8 may be
used as well. In one or more implementations, an integral
equation may be used to describe a time evolution of B, The
time evolution of E_ may depend for instance on the fraction
p of time the connection is effective, and/or on pairwise
distribution of pre-synaptic (t,,.) and post-synaptic (t,,,)
spike timing. In one implementation, the timing distribution
may be characterized using a probability distribution 6(At),
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and the equilibrium value of E, may be determined using a
solution to the following integral equation:

E o/ A-HEDOE.E L [H(3T)d0(dT)

It will be appreciated by those skilled in the arts that other
plasticity curves (or yet other types of relationships) may be
used with the approach of the present disclosure, including
for example non-symmetric rules (e.g., as described in co-
pending and co-owned U.S. patent application Ser. No.
13/465,924, entitled “SPIKING NEURAL NETWORK
FEEDBACK APPARATUS AND METHODS”, incorpo-
rated supra). Furthermore, other super-threshold plasticity
curves and/or other types of relationships may be used with
the approach of this disclosure, including for example
“slight” potentiation—i.e., configuration of the pre-synaptic
update with an amplitude that is lower than the depression of
the post-synaptic update.

Exemplary Methods

Referring now to FIGS. 7-9, exemplary implementations
of conditional plasticity-based methods according to the dis-
closure are described. In some implementations, the methods
of FIGS. 7-9 may be used, for example, for operating the
neurons 402, 412 of FIG. 4. Moreover, methods of FIG. 7-9
may be implemented in a connection (e.g., the connection 404
of FIG. 4). The methods of FIG. 7-9 may also be implemented
in sensory processing apparatus, comprising one or more
spiking neuron networks as described with respect to FI1G. 9,
infra, thereby advantageously aiding, inter alia, stable opera-
tion of network, and preventing runaway connection poten-
tiation.

FIG. 7 is a logical flow diagram illustrating achieving
target connection efficiency using conditional plasticity
update, in accordance with one or more implementations. At
step 702 of method 700, target efficiency of a connection may
be configured. In some implementations, the target efficiency
may comprise a network/synapse parameter and be estab-
lished at the beginning of network execution. In one or more
implementations, the target efficiency may be dynamically
adjusted based, for example, on network power consumption
and/or other parameters.

At step 704 of the method 700, a current value of connec-
tion efficiency may be determined using any of the method-
ologies described herein. In some implementations, the effi-
ciency may be determined using a number of input spikes
delivered in to a neuron via the connection that follow by a
response (spike) generated by the neuron within a time inter-
val). The number of input spikes may be low-pass filtered if
desired using, for example, an exponential filter, a running
mean, and/or a weighted running average of the input spike
train. Similarly, in some implementations, the number of
neuron responses may be low-pass filtered.

At step 706, the connection is adjusted in order to achieve
target connection efficiency, as described in detail for
example with respect to FIG. 5 above, and/or with respect to
FIGS. 8-9 below.

Inone or more implementations, the current efficiency may
be determined using Eqn. 8. The target efficiency may be
configured based on a fraction p of the post-synaptic outputs
to the pre-synaptic inputs, a steady state value of the effi-
ciency may be determined using, for example, Eqn. 10. The
calculated running average efficiency value may be used, in
one or more implementations, as the target efficiency.
Accordingly, plasticity adjustment described above may be
utilized so that current efficiency value does not exceed the
steady state (target) efficiency.

FIG. 8 illustrates a generalized method of conditional plas-
ticity update based on target connection efficiency, in accor-

(Eqn. 13)



US 9,111,215 B2

13

dance with one or more implementations. At step 802 of
method 800, target efficiency of a connection may be config-
ured.

At step 804 of the method 800, a current value of connec-
tion efficiency may be determined using any of the method-
ologies described herein.

At step 806, a check may be performed whether the current
efficiency is below the target efficiency value. When the cur-
rent efficiency is below the target, the method proceeds to step
808, where the connection may be adjusted in accordance
with plasticity Update 1.

When the current efficiency is above the target, the exem-
plary method proceeds to step 810, where the connection may
be adjusted in accordance with plasticity Update 2.

In some implementations, Update 1 and/or Update 2 may
comprise plasticity rules, such as those illustrated in FIGS.
6A-6B. The weight adjustment of the modulated portion of
Update 1 (e.g., the rule of Eqn. 5) may be increased, and the
weight adjustment of the modulated portion of Update 2 may
be decreased. Such increase and/or decrease may be effectu-
ated by, for example, increasing/decreasing parameter § in
Eqn. 5, or by varying the delay 6t in Eqn. 6. Other implemen-
tations may be used, such as for example, a combination of
modulation amplitude and delay or switching from one plas-
ticity rule (e.g., the family of curves 604 in FIG. 6A) to
another (e.g., the family of curves 614 in FIG. 6B).

In one or more implementations, Update 1 of step 808 of
the method 800 may comprise an increased LTP resulting in,
inter alia, stronger connection potentiation. In some imple-
mentations, the Update 1 STDP rule of step 808 may com-
prise a decreased LTD resulting in, inter alia, weaker connec-
tion depression. The above two approaches may also be
combined, thereby producing higher connection efficacy.

In one or more implementations, Update 2 of step 810 of
the method 800 may comprise an increased LTD resulting in,
inter alia, stronger connection depression. In some imple-
mentations, Update 2 of step 810 of method 800 may com-
prise an increased LTP resulting in, inter alia, stronger con-
nection potentiation. The two latter approaches may also be
combined, thereby producing lower connection efficacy.
Exemplary Apparatus

Various exemplary spiking network apparatus implement-
ing one or more of the methods set forth herein (e.g., using the
exemplary conditional plasticity mechanisms explained
above) are now described with respect to FIGS. 9-11C.
Sensory Processing Apparatus

One exemplary apparatus for processing of sensory infor-
mation (e.g., visual, audio, somatosensory) using a spiking
neural network (including one or more of the conditional
plasticity mechanisms described herein) is shown in FIG. 9.
The illustrated processing apparatus 1000 includes an input
interface configured to receive an input sensory signal 1020.
In some implementations, this sensory input comprises elec-
tromagnetic waves (e.g., visible light, IR, UV, etc.) entering
an imaging sensor array (comprising RGCs, a charge coupled
device (CCD), CMOS device, or an active-pixel sensor
(APS)). The input signal in this example is a sequence of
images (image frames) received from a CCD or CMOS cam-
era via a receiver apparatus, or downloaded from a file. Alter-
natively, the image may be a two-dimensional matrix of RGB
values refreshed at a 24 Hz frame rate. It will be appreciated
by those skilled in the art that the above image parameters and
components are merely exemplary, and many other image
representations (e.g., bitmap, CMYK, grayscale, etc.) and/or
frame rates are equally useful with the present disclosure.

The apparatus 1000 may also include an encoder 1024
configured to transform (encode) the input signal so as to
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form an encoded signal 1026. In one variant, the encoded
signal comprises a plurality of pulses (also referred to as a
group of pulses) configured to model neuron behavior. The
encoded signal 1026 may be communicated from the encoder
1024 via multiple connections (also referred to as transmis-
sion channels, communication channels, or synaptic connec-
tions) 1004 to one or more neuronal nodes (also referred to as
the detectors) 1002.

In the implementation of FIG. 9, different detectors of the
same hierarchical layer are denoted by an “_n” designator,
such that e.g., the designator 1002_1 denotes the first detector
of the layer 1002. Although only two detectors (1002_1,
1002__») are shown in FIG. 9 for clarity, it is appreciated that
the encoder can be coupled to any number of detector nodes
that is compatible with the detection apparatus hardware and
software limitations. Furthermore, a single detector node may
be coupled to any practical number of encoders.

In one implementation, each of the detectors 1002_1,
1002__» contain logic (which may be implemented as a soft-
ware code, hardware logic, or a combination of thereof) con-
figured to recognize a predetermined pattern of pulses in the
encoded signal 1004, using for example any of the mecha-
nisms described in U.S. patent application Ser. No. 12/869,
573, filed Aug. 26, 2010 and entitled “SYSTEMS AND
METHODS FOR INVARIANT PULSE LATENCY COD-
ING”, U.S. patent application Ser. No. 12/869,583, filed Aug.
26, 2010, entitled “INVARIANT PULSE LATENCY COD-
ING SYSTEMS AND METHODS”, U.S. patent application
Ser. No. 13/117,048, filed May 26, 2011 and entitled “APPA-
RATUS AND METHODS FOR POLYCHRONOUS
ENCODING AND MULTIPLEXING IN NEURONAL
PROSTHETIC DEVICES”, U.S. patent application Ser. No.
13/152,084, filed Jun. 2, 2011, entitled “APPARATUS AND
METHODS FOR PULSE-CODE INVARIANT OBIECT
RECOGNITION?, each incorporated herein by reference in
its entirety, to produce post-synaptic detection signals trans-
mitted over communication channels 1008. In FIG. 9, the
designators 1008_1, 1008__» denote output of the detectors
1002_1, 1002__p, respectively.

In one implementation, the detection signals are delivered
to a next layer of the detectors 1012 (comprising detectors
1012/, 1012 _m, 1012 k) for recognition of complex
object features and objects, similar to the exemplary configu-
ration described in commonly owned and co-pending U.S.
patent application Ser. No. 13/152,084, filed Jun. 2, 2011,
entitled “APPARATUS AND METHODS FOR PULSE-
CODE INVARIANT OBJECT RECOGNITION”, incorpo-
rated herein by reference in its entirety. In this configuration,
each subsequent layer of detectors is configured to receive
signals from the previous detector layer, and to detect more
complex features and objects (as compared to the features
detected by the preceding detector layer). For example, a
bank of edge detectors is followed by a bank of bar detectors,
followed by a bank of corner detectors and so on, thereby
enabling alphabet recognition by the apparatus.

Each of the detectors 1002 may output detection (post-
synaptic) signals on communication channels 1008_1,
1008__» (with appropriate latency) that may propagate with
different conduction delays to the detectors 1012. The detec-
tor cascade of the apparatus of FIG. 9 may contain any prac-
tical number of detector nodes and detector banks deter-
mined, inter alia, by the software/hardware resources of the
detection apparatus and complexity of the objects being
detected.

The sensory processing apparatus implementation illus-
trated in FIG. 9 may further comprise lateral connections
1006. In some variants, the connections 1006 are configured
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to communicate post-synaptic activity indications between
neighboring neurons of the same hierarchy level, as illus-
trated by the connection 1006_1 in FIG. 9. In some variants,
the neighboring neuron may comprise neurons having over-
lapping inputs (e.g., the inputs 1004_1,1004_ »in FI1G. 9), so
that the neurons may compete in order to not learn the same
input features. In one or more implementations, the neighbor-
ing neurons may comprise spatially proximate neurons such
as being disposed within a certain volume/area from one
another on a 3-dimensional (3D) and or two-dimensional
(2D) space.

The apparatus 1000 may also comprise feedback connec-
tions 1014, configured to communicate context information
from detectors within one hierarchy layer to previous layers,
as illustrated by the feedback connections 1014_1 in FIG. 9.
In some implementations, the feedback connection 1014_2 is
configured to provide feedback to the encoder 1024 thereby
facilitating sensory input encoding, as described in detail in
commonly owned and co-pending U.S. patent application
Ser. No. 13/152,084, filed Jun. 2, 2011, entitled “APPARA-
TUS AND METHODS FOR PULSE-CODE INVARIANT
OBJECT RECOGNITION™, incorporated supra.
Computerized Neuromorphic System

One particular implementation of the computerized neuro-
morphic processing system, adapted for operating a comput-
erized spiking network (and implementing the exemplary
Conditional plasticity methodology described supra), is illus-
trated in FIG. 10. The computerized system 1100 of FIG. 10
comprises an input interface 1110, such as for example an
image sensor, a computerized spiking retina, an audio array, a
touch-sensitive input device, etc. The input interface 1110 is
coupled to the processing block (e.g., a single or multi-pro-
cessor block) via the input communication interface 1114.
The system 1100 further comprises a random access memory
(RAM) 1108, configured to store neuronal states and connec-
tion parameters (e.g., weights 408 in FIG. 4), and to facilitate
synaptic updates. In some exemplary implementations, syn-
aptic updates are performed according to the description pro-
vided in, for example, in U.S. patent application Ser. No.
13/239,255 filed Sep. 21, 2011, entitled “APPARATUS AND
METHODS FOR SYNAPTIC UPDATE IN A PULSE-
CODED NETWORK?™, incorporated by reference supra.

In some implementations, the memory 1108 is coupled to
the processor 1102 via a direct connection (memory bus)
1116. The memory 1108 may also be coupled to the processor
1102 via a high-speed processor bus 1112).

The system 1100 may further comprise a nonvolatile stor-
age device 1106, comprising, inter alia, computer readable
instructions configured to implement various aspects of spik-
ing neuronal network operation (e.g., sensory input encoding,
connection plasticity, operation model of neurons, etc.). The
nonvolatile storage 1106 may be used for instance to store
state information of the neurons and connections when, for
example, saving/loading network state snapshot, or imple-
menting context switching (e.g., saving current network con-
figuration (comprising, inter alia, connection weights and
update rules, neuronal states and learning rules, etc.) for later
use, and loading of a previously stored network configuration.

In some implementations, the computerized apparatus
1100 is coupled to one or more external processing/storage/
input devices via an I/O interface 1120, such as a computer
1/0 bus (PCI-E), wired (e.g., Ethernet) or wireless (e.g., Wi-
Fi) network connection.

In another variant, the input/output interface comprises a
speech input (e.g., a microphone) and a speech recognition
module configured to receive and recognize user commands.
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It will be appreciated by those skilled in the arts that vari-
ous processing devices may be used with computerized sys-
tem 1100, including but not limited to, a single core/multicore
CPU, DSP, FPGA, GPU, ASIC, combinations thereof, and/or
other processors. Various user input/output interfaces are
similarly applicable to implementations of the disclosure
including, for example, an LCD/LED monitor, touch-screen
input and display device, speech input device, stylus, light
pen, trackball, end the likes.

Referring now to FIG. 11A, one implementation of neuro-
morphic computerized system configured to implement con-
ditional plasticity mechanism in a spiking network is
described in detail. The neuromorphic processing system
1130 of FIG. 11 A comprises a plurality of processing blocks
(micro-blocks) 1140, where each micro-block comprises a
computing logic core 1132 and a memory block 1134. The
logic core 1132 is configured to implement various aspects of
neuronal node operation, such as the node model, and synap-
tic update rules (e.g., the I-STDP) and/or other tasks relevant
to network operation. The memory block is configured to
store, inter alia, neuronal state variables and connection
parameters (e.g., weights, delays, I/O mapping) of connec-
tions 1138.

The micro-blocks 1140 are interconnected with one
another using connections 1138 and routers 1136. As it is
appreciated by those skilled in the arts, the connection layout
in FIG. 11A is exemplary, and many other connection imple-
mentations (e.g., one to all, all to all, etc.) are compatible with
the disclosure.

The neuromorphic apparatus 1130 is configured to receive
input (e.g., visual input) via the interface 1142. In one or more
implementations, applicable for example to interfacing with a
computerized spiking retina or an image array, the apparatus
1130 may provide feedback information via the interface
1142 to facilitate encoding of the input signal.

The neuromorphic apparatus 1130 is configured to provide
output (e.g., an indication of recognized object or a feature, or
a motor command, e.g., to zoom/pan the image array) via the
interface 1144.

The apparatus 1130, in one or more implementations, may
interface to external fast response memory (e.g., RAM) via
high bandwidth memory interface 1148, thereby enabling
storage of intermediate network operational parameters (e.g.,
spike timing, etc.). The apparatus 1130 may also interface to
external slower memory (e.g., Flash, or magnetic (hard
drive)) via lower bandwidth memory interface 1146, in order
to facilitate program loading, operational mode changes, and
retargeting, where network node and connection information
for a current task is saved for future use and flushed, and
previously stored network configuration is loaded in its place.

FIG. 11B illustrates implementations of a shared bus neu-
romorphic computerized system comprising micro-blocks
1140, described with respect to FIG. 11A, supra, coupled to a
shared interconnect. The apparatus 1145 of FIG. 11B utilizes
one (or more) shared bus(es) 1146 in order to interconnect
micro-blocks 1140 with one another.

FIG. 11C illustrates one implementation of cell-based neu-
romorphic computerized system architecture configured to
implement Conditional plasticity mechanism in a spiking
network. The neuromorphic system 1150 of FIG. 11C com-
prises a hierarchy of processing blocks (cells block). In some
implementations, the lowest level L1 cell 1152 of the appa-
ratus 1150 may comprise logic and memory, and may be
configured similar to the micro block 1140 of the apparatus
shown in FIG. 11A. A number of cell blocks may be arranges
in a cluster and communicate with one another a local inter-
connects 1162, 1164. Each such cluster may form a higher-
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level cell, e.g., cell L2, denoted as 1154 in FIG. 11C. Simi-
larly, several L2 clusters may communicate with one another
via a second-level interconnect 1166 and form a super-cluster
L3, denoted as 1156 in FIG. 11C. The super-clusters 1154
may for example communicate via a third level interconnect
1168, and may form a next level cluster, and so on. It will be
appreciated by those skilled in the arts that the hierarchical
structure of the apparatus 1150, comprising a given number
(e.g., four) cells per level, is merely one exemplary imple-
mentation, and other implementations may comprise more or
fewer cells per level, and/or fewer or more levels, as well as
yet other types of architectures.

Different cell levels (e.g., L1, L2, L.3) of the exemplary
apparatus 1150 of FIG. 11C may be configured to perform
functionality with various levels of complexity. In one imple-
mentation, different L1 cells may process in parallel different
portions of the visual input (e.g., encode different frame
macro-blocks), with the [.2, L3 cells performing progres-
sively higher-level functionality (e.g., edge detection, object
detection). Different 1.2, 1.3 cells may also perform different
aspects of operating for example a robot, with one or more
L.2/1.3 cells processing visual data from a camera, and other
L.2/1.3 cells operating a motor control block for implementing
lens motion when e.g., tracking an object, or performing lens
stabilization functions.

The neuromorphic apparatus 1150 may receive input (e.g.,
visual input) via the interface 1160. In one or more imple-
mentations, applicable for example to interfacing with a com-
puterized spiking retina or image array, the apparatus 1150
may provide feedback information via the interface 1160 to
facilitate encoding of the input signal.

The neuromorphic apparatus 1150 may provide output
(e.g., an indication of recognized object or a feature, or a
motor command, e.g., to zoom/pan the image array) via the
interface 1170. In some implementations, the apparatus 1150
may perform all of the /O functionality using single I/O
block (not shown).

The apparatus 1150, in one or more implementations, may
also interface to external fast response memory (e.g., RAM)
via high bandwidth memory interface (not shown), thereby
enabling storage of intermediate network operational param-
eters (e.g., spike timing, etc.). The apparatus 1150 may also
interface to external slower memory (e.g., flash, or magnetic
(hard drive)) via lower bandwidth memory interface (not
shown), in order to facilitate program loading, operational
mode changes, and retargeting, where network node and con-
nection information for a current task is saved for future use
and flushed, and a previously stored network configuration is
loaded in its place.

Exemplary Uses and Applications of Certain Aspects of the
Disclosure

Various aspects of the disclosure may advantageously be
applied to, inter alia, the design and operation of large spiking
neural networks configured to process streams of input
stimuli, in order to aid in detection and functional binding
related aspect of the input.

In some implementations, conditional plasticity mecha-
nisms described herein may be implemented in a spiking
neuron of a network, or in a connection of the network.
Conditional plasticity adjustment may be able to limit con-
nection potentiation without relying on weight capping

Furthermore, the use of efficiency as a control mechanism
for modifying plasticity rules may enable achieving (and
maintaining) target connection efficiency within the spiking
neuron network. The approach of the disclosure can advan-
tageously, among other things, (i) reduce runaway connection
potentiation and post-synaptic response generation; (ii)
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reduce network traffic and/or power consumption; (iii)
achieve stable network operation without using pre-defined
weight caps; and (iv) enable efficient network operation (e.g.,
visual input encoding) for a wide variety of input conditions.
It will be appreciated that the increased network stability and
flexibility may be traded for (a) aless complex, less costly and
more robust network capable of processing the same feature
set with fewer neurons; and/or (b) a more capable, higher
performance network capable of processing larger and more
complex feature set with the same number of neurons, when
compared to the prior art solutions.

It is appreciated by those skilled in the arts that above
implementation are exemplary, and the framework of the
disclosure is equally compatible and applicable to processing
of other information, such as, for example information clas-
sification using a database, where the detection of a particular
pattern can be identified as a discrete signal similar to a spike,
and where coincident detection of other patterns influences
detection of a particular one pattern based on a history of
previous detections in a way similar to an operation of exem-
plary spiking neural network.

Advantageously, exemplary implementations of the
present innovation are useful in a variety of devices including
without limitation prosthetic devices, autonomous and
robotic apparatus, and other electromechanical devices
requiring sensory processing functionality. Examples of such
robotic devises are manufacturing robots (e.g., automotive),
military, medical (e.g. processing of microscopy, x-ray, ultra-
sonography, tomography). Examples of autonomous vehicles
include rovers, unmanned air vehicles, underwater vehicles,
smart appliances (e.g. ROOMBA®), etc.

Implementations of the principles of the disclosure are
applicable to video data compression and processing in a
wide variety of stationary and portable devices, such as, for
example, smart phones, portable communication devices,
notebook, netbook and tablet computers, surveillance camera
systems, and practically any other computerized device con-
figured to process vision data

Implementations of the principles of the disclosure are
further applicable to a wide assortment of applications
including computer human interaction (e.g., recognition of
gestures, voice, posture, face, etc.), controlling processes
(e.g., an industrial robot, autonomous and other vehicles),
augmented reality applications, organization of information
(e.g., for indexing databases of images and image sequences),
access control (e.g., opening a door based on a gesture, open-
ing an access way based on detection of an authorized per-
son), detecting events (e.g., for visual surveillance or people
or animal counting, tracking), data input, financial transac-
tions (payment processing based on recognition ofa person or
a special payment symbol) and many others.

Advantageously, the disclosure can be used to simplify
tasks related to motion estimation, such as where an image
sequence is processed to produce an estimate of the object
position (and hence velocity) either at each points in the
image or in the 3D scene, or even of the camera that produces
the images. Examples of such tasks are: ego motion, i.e.,
determining the three-dimensional rigid motion (rotation and
translation) of the camera from an image sequence produced
by the camera; following the movements of a set of interest
points or objects (e.g., vehicles or humans) in the image
sequence and with respect to the image plane.

In another approach, portions of the object recognition
system are embodied in a remote server, comprising a com-
puter readable apparatus storing computer executable
instructions configured to perform pattern recognition in data
streams for various applications, such as scientific, geophysi-
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cal exploration, surveillance, navigation, data mining (e.g.,
content-based image retrieval). Myriad other applications
exist that will be recognized by those of ordinary skill given
the present disclosure.

It will be recognized that while certain aspects of the dis-
closure are described in terms of a specific sequence of steps
of a method, these descriptions are only illustrative of the
broader methods of the invention, and may be modified as
required by the particular application. Certain steps may be
rendered unnecessary or optional under certain circum-
stances. Additionally, certain steps or functionality may be
added to the disclosed embodiments, or the order of perfor-
mance of two or more steps permuted. All such variations are
considered to be encompassed within the invention disclosed
and claimed herein.

While the above detailed description has shown, described,
and pointed out novel features of the invention as applied to
various embodiments, it will be understood that various omis-
sions, substitutions, and changes in the form and details of the
device or process illustrated may be made by those skilled in
the art without departing from the invention. The foregoing
description is of the best mode presently contemplated of
carrying out the invention. This description is in no way
meant to be limiting, but rather should be taken as illustrative
of the general principles of the invention. The scope of the
disclosure should be determined with reference to the claims.

What is claimed:

1. A method of operating a connection configured to com-
municate an input to an artificial spiking neuron, said method
comprising:

determining an efficiency associated with operating said

connection in accordance with a first plasticity mecha-
nism; and

based at least in part on an indication, operating said con-

nection in accordance with a second plasticity mecha-
nism;

wherein:

said indication is based at least in part on a comparison
of said efficiency to a target efficiency;

said first plasticity mechanism comprises a common
portion and a first adjustable portion;

said second plasticity mechanism comprises said com-
mon portion and a second adjustable portion; and

said second adjustable portion comprises a time-shifted
version of said first adjustable portion.

2. The method of claim 1, wherein said second adjustable
portion comprises a scaled version of said first adjustable
portion.

3. The method of claim 2, wherein

said input comprises a plurality of events capable of caus-

ing generation of one or more responses by said artificial
spiking neuron; and

said determining said efficiency is based at least in part on

anumber of said plurality of events and a number of said
one or more responses.

4. The method of claim 3, wherein said plurality of events
comprises a feed-forward stimulus.

5. The method of claim 4, wherein said efficiency is based
on a ratio of (i) a portion of said plurality of events delivered
to said artificial spiking neuron via said connection that are
followed by generation of said one or more responses; to (ii)
a total number of said plurality of events.

6. The method of claim 5, wherein:

said indication is based at least in part on said efficiency

being greater than said target efficiency; and

said second plasticity mechanism is configured to decrease

an efficacy of said connection relative said first plasticity
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mechanism, thereby decreasing a probability of said one
or more responses being generated.

7. The method of claim 3, wherein:

said indication is based at least in part on said efficiency

being lower than said target efficiency; and

said second plasticity mechanism is configured to potenti-

ate said connection.

8. The method of claim 7, wherein said indication is further
based at least in part on an event selected from a group
consisting of: (i) a timer expiration; (ii) an overflow of a
buffer, said buffer capable of storing one or more spike times
associated with said input; and (iii) an external trigger, pro-
vided to said artificial spiking neuron via a bus, said bus being
separate from said connection.

9. A method of operating a connection configured to com-
municate an input to an artificial spiking neuron, said method
comprising:

determining an efficiency associated with operating said

connection in accordance with a first plasticity mecha-
nism; and

based at least in part on an indication, operating said con-

nection in accordance with a second plasticity mecha-
nism;

wherein:

said indication is based at least in part on a comparison
of said efficiency to a target efficiency;

said input comprises a plurality of events capable of
causing generation of one or more responses by said
artificial spiking neuron; and

said determining said efficiency is based at least in part
on a number of said plurality of events and a number
of said one or more responses.

10. The method of claim 9, wherein said efficiency is based
on a ratio of (i) a portion of said plurality of events delivered
to said artificial spiking neuron via said connection that are
followed by generation of said one or more responses; to (ii)
a total number of said plurality of events.

11. The method of claim 10, wherein: said plurality of
events comprises a feed-forward stimulus.

12. The method of claim 11 wherein: said indication is
based at least in part on said efficiency being greater than said
target efficiency; and

said second plasticity mechanism is configured to decrease

an efficacy of'said connection relative said first plasticity
mechanism, thereby decreasing a probability of said one
or more responses being generated.

13. The method of claim 12, wherein said indication is
further based at least in part on said input being received by
said artificial spiking neuron via said connection.

14. The method of claim 12, wherein said indication is
further based at least in part on said response being generated
by said artificial spiking neuron.

15. The method of claim 10, wherein said indication is
further based at least in part on an event selected from a group
consisting of: (i) a timer expiration; (ii) an overflow of a
buffer, said buffer capable of storing one or more spike times
associated with said input; and (iii) an external trigger, pro-
vided to said neuron via a bus, said bus being separate from
said connection.

16. The method of claim 15, wherein:

said indication is based at least in part on said efficiency

being lower than said target efficiency; and

said second plasticity mechanism is configured to potenti-

ate said connection.
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17. The method of claim 16, wherein:

said potentiation of said connection comprises increasing
connection efficacy, thereby increasing a probability of
said one or more responses being generated; and

said increased probability is effectuated relative to a prob-

ability of said one or more responses being generated
associated with said first mechanism.

18. Computerized apparatus comprising a storage
medium, said storage medium comprising a plurality of
executable instructions being configured to, when executed,
adjust an efficiency of a connection associated with at least
one spiking neuron, said plurality of executable instructions
comprising instructions configured to:

configure an efficacy adjustment of said connection in

accordance with a first mechanism when said efficiency
is below a target value; and

configure said efficacy adjustment in accordance with a

second mechanism at least partly different than said first
mechanism when said efficiency is above said target
value;

wherein:

said first mechanism comprises a common portion and a
first adjustable portion;

said second mechanism comprises said common portion
and a second adjustable portion; and

an adjustment of said efficacy that is based on said sec-
ond adjustable portion is configured to cause a lower
value of said efficacy, relative to adjustment of said
efficacy that is based on said first adjustable portion.

19. The apparatus of claim 18, wherein:

said second mechanism is configured to potentiate said

connection, said potentiation characterized by a time-
dependent function that comprises at least a time win-
dow associated therewith; and

said potentiation is configured to increase a probability of

a response being generated by said at least one spiking
neuron.

20. The apparatus of claim 19, wherein said time window is
in a range comprising 5 ms and 50 ms inclusive.

21. The apparatus of claim 19, wherein:

said connection is configured to provide an input to said

neuron;

said response is characterized by an output time, and said

input is characterized by an input time;

said time window is selected based at least in part on said

output time and time associated with at least one of a

plurality of events associated with said connection;
integration of said time-dependent function over said time

window is configured to generate a positive value.

22. The apparatus of claim 21, wherein:

said efficacy is characterized by a connection weight; and

said positive value is configured to increase said connec-

tion weight, configured to cause an increase of a prob-
ability of generation of said response based at least in
part on a stimulus associated with at least one of said
plurality of events.

23. The apparatus of claim 22, wherein said event is
selected from a group consisting of: (i) a timer expiration; (ii)
an overflow of a buffer, said buffer configured to store one or
more spike times associated with said input; and (iii) an
external trigger, provided to said at least one spiking neuron
via a bus, said bus being separate from said connection.

24. The apparatus of claim 21, wherein:

said input comprises a plurality of input spikes configured

to cause generation of one or more responses by said at
least one spiking neuron;
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said determination of'said efficiency is based at least in part
on a ratio of: (i) a portion of said plurality of said input
spikes delivered to said at least one spiking neuron via
said connection that are followed by generation of said
one or more responses within a time interval; and (ii) a
total number of said input spikes within said interval;
and

said interval is configured to exceed said time window.

25. Computerized apparatus comprising a storage
medium, said storage medium comprising a plurality of
executable instructions being configured to, when executed,
adjust an efficiency of a connection associated with at least
one spiking neuron, said plurality of executable instructions
comprising instructions configured to:

configure an efficacy adjustment of said connection in

accordance with a first mechanism when said efficiency
is below a target value; and

configure said efficacy adjustment in accordance with a

second mechanism at least partly different than said first
mechanism when said efficiency is above said target
value;

wherein:

said connection is configured to provide feed-forward
input to said at least one spiking neuron, said input
configured to cause generation of aresponse by said at
least one spiking neuron; and

said efficiency is based at least in part on a ratio of: (i) a
portion of said input delivered to said at least one
spiking neuron via said connection that is followed by
generation of said response; and (ii) total amount of
input delivered to said neuron via said connection.

26. The apparatus of claim 25, wherein said efficacy adjust-
ment in accordance with said second mechanism is config-
ured to decrease a probability of said response being gener-
ated.

27. A computerized spiking neural network apparatus
comprising a storage medium, said storage medium compris-
ing a plurality of instructions configured to, when executed,
implement dynamic control of responses of a neuron of said
neural network to feed-forward stimulus received by said
neuron via a plurality of connections, said plurality of execut-
able instructions comprising instructions configured to:

for at least one of said plurality of connections that pro-

vides at least a portion of said stimulus, apply a first
plasticity mechanism; and

based at least in part on an indication, apply a second

plasticity mechanism different than said first plasticity
mechanism;

wherein:

said first and second plasticity mechanisms cooperate to
effectuate said dynamic control; and

said first and said second mechanisms further cooperate
to eliminate positive feedback within a loop, said loop
comprising said neuron, said at least one of said plu-
rality of connections; and another neuron configured
to provide said at least a portion of said stimulus to
said neuron via said at least one of said plurality of
connections.

28. A computerized spiking neural network apparatus
comprising a storage medium, said storage medium compris-
ing a plurality of instructions configured to, when executed,
implement dynamic control of responses of a neuron of said
neural network to feed-forward stimulus received by said
neuron via a plurality of connections by at least:

for at least one of said plurality of connections that pro-

vides at least a portion of said stimulus, apply a first
plasticity mechanism; and
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based at least in part on an indication, apply a second
plasticity mechanism different than said first plasticity
mechanism;
wherein:
said first and second mechanisms cooperate to effectuate
said dynamic control;
said elimination of positive feedback comprises a deter-
mination of connection efficiency associated with
operation of said connection in accordance with said
first plasticity mechanism; and
said efficiency is based on a ratio of: (i) a portion of
inputs delivered to said neuron via said connection
that are followed by generation of said response; and
(i1) a total number of inputs delivered to said neuron
via said connection.
29. The apparatus of claim 28, wherein:
said indication is based at least in part on said connection
efficiency being lower than said target connection effi-
ciency; and
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said second plasticity mechanism is configured to potenti-
ate said connection.
30. Computerized apparatus comprising:
means for configuring an efficacy adjustment of said con-
nection in accordance with a first mechanism when said
efficiency is below a target value;
means for configuring said efficacy adjustment in accor-
dance with a second mechanism at least partly different
than said first mechanism when said efficiency is above
said target value; and
wherein:
said first mechanism comprises a common portion and a
first adjustable portion;
said second mechanism comprises said common portion
and a second adjustable portion; and
an adjustment of said efficacy that is based on said sec-
ond adjustable portion is configured to cause a lower
value of said efficacy, relative adjustment of said effi-
cacy that based on said first portion.
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